213 lines
6.5 KiB
Python
213 lines
6.5 KiB
Python
import logging
|
|
|
|
from django.db.models import Q
|
|
from django.contrib.postgres.search import SearchQuery, SearchRank, SearchVector, TrigramSimilarity
|
|
from django.db.models import Max, Min
|
|
|
|
from products.models import Product
|
|
|
|
|
|
|
|
def extract_search_filters(result_set):
|
|
"""
|
|
Returned object should look something like:
|
|
|
|
{
|
|
"tags": {
|
|
'singles': set(),
|
|
'header1': []
|
|
},
|
|
"attributes": {
|
|
'singles': set(),
|
|
'header1': []
|
|
},
|
|
}
|
|
"""
|
|
filter_dict = {
|
|
"tags": {
|
|
'singles': set(),
|
|
},
|
|
"attributes": {
|
|
'singles': set(),
|
|
}
|
|
}
|
|
for item in result_set:
|
|
try:
|
|
# extract tags
|
|
tags = item.tags.all()
|
|
for tag in tags:
|
|
if len(tag.name.split('/')) == 1:
|
|
filter_dict['tags']['singles'].add(tag.name)
|
|
else:
|
|
# set penultimate tag as header
|
|
chunks = tag.name.split('/')
|
|
header = chunks[-2]
|
|
name = chunks[-1]
|
|
# check if
|
|
entry = filter_dict['tags'].get(header)
|
|
if entry is None:
|
|
filter_dict['tags'][header] = set()
|
|
filter_dict['tags'][header].add(name)
|
|
# extract attributes
|
|
attributes = item.attributes.all()
|
|
for tag in attributes:
|
|
if len(tag.name.split('/')) == 1:
|
|
filter_dict['attributes']['singles'].add(tag.name)
|
|
else:
|
|
# set penultimate tag as header
|
|
chunks = tag.name.split('/')
|
|
header = chunks[-2]
|
|
name = chunks[-1]
|
|
# check if
|
|
entry = filter_dict['attributes'].get(header)
|
|
if entry is None:
|
|
filter_dict['attributes'][header] = set()
|
|
filter_dict['attributes'][header].add(name)
|
|
except Exception as e:
|
|
logging.error(f'Extacting filters for {item}')
|
|
return filter_dict
|
|
|
|
|
|
def find_related_products_v1(keyword):
|
|
"""
|
|
Classical approach to the search
|
|
|
|
Using Q objects
|
|
|
|
"""
|
|
# search in tags
|
|
tags = Product.tags.tag_model.objects.filter(name__icontains=keyword)
|
|
# search in category
|
|
categories = Product.category.tag_model.objects.filter(name__icontains=keyword)
|
|
# search in attributes
|
|
attributes = Product.attributes.tag_model.objects.filter(name__icontains=keyword)
|
|
# unified tag search
|
|
products_qs = Product.objects.filter(
|
|
Q(name__icontains=keyword)|
|
|
Q(description__icontains=keyword)|
|
|
Q(tags__in=tags)|
|
|
Q(category__in=categories)|
|
|
Q(attributes__in=attributes)
|
|
)
|
|
return products_qs
|
|
|
|
|
|
def find_related_products_v5(keyword):
|
|
"""
|
|
Single query solution, using Q objects
|
|
"""
|
|
products_qs = Product.objects.filter(
|
|
Q(name__icontains=keyword)|
|
|
Q(description__icontains=keyword)|
|
|
Q(tags__label__icontains=keyword)|
|
|
Q(category__name__icontains=keyword)|
|
|
Q(attributes__label__icontains=keyword)
|
|
)
|
|
return set(products_qs)
|
|
|
|
|
|
def find_related_products_v2(keyword):
|
|
"""
|
|
More advanced: using search vectors
|
|
"""
|
|
fields=('name', 'description', 'tags__label', 'attributes__label', 'category__name')
|
|
vector = SearchVector(*fields)
|
|
products_qs = Product.objects.annotate(
|
|
search=vector
|
|
).filter(search=keyword)
|
|
return set(products_qs)
|
|
|
|
|
|
def find_related_products_v3(keyword):
|
|
"""
|
|
Ranked product search
|
|
|
|
SearchVectors for the fields
|
|
SearchQuery for the value
|
|
SearchRank for relevancy scoring and ranking
|
|
"""
|
|
vector = SearchVector('name') + SearchVector('description') + SearchVector('tags__label') + SearchVector('attributes__label') + SearchVector('category__name')
|
|
query = SearchQuery(keyword)
|
|
|
|
products_qs = Product.objects.annotate(
|
|
rank=SearchRank(vector, query)
|
|
).filter(rank__gt=0.05) # removed order_by because its lost in casting
|
|
|
|
return set(products_qs)
|
|
|
|
|
|
def find_related_products_v6(keyword, shipping_cost=None, discount=None, category=None, tags=None, price_min=None,price_max=None):
|
|
"""
|
|
Ranked product search
|
|
|
|
SearchVectors for the fields
|
|
SearchQuery for the value
|
|
SearchRank for relevancy scoring and ranking
|
|
|
|
allow filtering by:
|
|
- shipping cost
|
|
"""
|
|
vector = SearchVector('name') + SearchVector('description') + SearchVector('tags__label') + SearchVector('attributes__label') + SearchVector('category__name')
|
|
query = SearchQuery(keyword)
|
|
|
|
products_qs = Product.objects.annotate(
|
|
rank=SearchRank(vector, query)
|
|
).filter(rank__gt=0.05) # removed order_by because its lost in casting
|
|
|
|
# filter by category
|
|
if category is not None:
|
|
products_qs = products_qs.filter(category=category)
|
|
|
|
# filter by tags
|
|
if tags is not None:
|
|
products_qs = products_qs.filter(tags=tags)
|
|
|
|
# filter by shipping cost
|
|
if shipping_cost is True:
|
|
# only instances with shipping costs
|
|
products_qs = products_qs.filter(
|
|
Q(shipping_cost__isnull=False)&
|
|
Q(shipping_cost__gte=1)
|
|
)
|
|
elif shipping_cost is False:
|
|
# only intances without shpping costs
|
|
products_qs = products_qs.filter(Q(shipping_cost=None)|Q(shipping_cost=0.00))
|
|
|
|
# filter by discount
|
|
if discount is True:
|
|
# only instances with shipping costs
|
|
products_qs = products_qs.filter(
|
|
Q(discount__isnull=False)&
|
|
Q(discount__gte=1)
|
|
)
|
|
elif discount is False:
|
|
# only intances without shpping costs
|
|
products_qs = products_qs.filter(Q(discount=None)|Q(discount=0.00))
|
|
|
|
# filter by price
|
|
if price_min is not None:
|
|
products_qs = products_qs.filter(price__gt=price_min)
|
|
if price_max is not None:
|
|
products_qs = products_qs.filter(price__lt=price_max)
|
|
|
|
# get min_price and max_price
|
|
min_price = products_qs.aggregate(Min('price'))
|
|
max_price = products_qs.aggregate(Max('price'))
|
|
|
|
|
|
return set(products_qs), min_price, max_price
|
|
|
|
|
|
def find_related_products_v4(keyword):
|
|
"""
|
|
Similarity-ranked search using trigrams
|
|
Not working
|
|
"""
|
|
# fields=('name', 'description', 'tags__label', 'attributes__label', 'category__name')
|
|
|
|
products_qs = Product.objects.annotate(
|
|
similarity=TrigramSimilarity('name', keyword),
|
|
).order_by('-similarity')
|
|
|
|
return set(products_qs)
|