import logging from django.db.models import Q from django.contrib.postgres.search import SearchQuery, SearchRank, SearchVector, TrigramSimilarity from products.models import Product def extract_search_filters(result_set): """ Returned object should look something like: { "singles": [], # non tree tags "entry_1": [ 'tag1', 'tag2' ], "entry_2": [ 'tag1', 'tag2' ], } """ filter_dict = { 'singles': set(), } for item in result_set: try: # extract tags tags = item.tags.all() for tag in tags: if len(tag.name.split('/')) == 1: filter_dict['singles'].add(tag.name) else: # set penultimate tag as header chunks = tag.name.split('/') header = chunks[-2] name = chunks[-1] # check if entry = filter_dict.get(header) if entry is None: filter_dict[header] = set() filter_dict[header].add(name) # extract attributes attributes = item.attributes.all() for tag in attributes: if len(tag.name.split('/')) == 1: filter_dict['singles'].add(tag.name) else: # set penultimate tag as header chunks = tag.name.split('/') header = chunks[-2] name = chunks[-1] # check if entry = filter_dict.get(header) if entry is None: filter_dict[header] = set() filter_dict[header].add(name) except Exception as e: logging.error(f'Extacting filters for {item}') return filter_dict def find_related_products_v1(keyword): """ Classical approach to the search Using Q objects """ # search in tags tags = Product.tags.tag_model.objects.filter(name__icontains=keyword) # search in category categories = Product.category.tag_model.objects.filter(name__icontains=keyword) # search in attributes attributes = Product.attributes.tag_model.objects.filter(name__icontains=keyword) # unified tag search products_qs = Product.objects.filter( Q(name__icontains=keyword)| Q(description__icontains=keyword)| Q(tags__in=tags)| Q(category__in=categories)| Q(attributes__in=attributes) ) return products_qs def find_related_products_v5(keyword): """ Single query solution, using Q objects """ products_qs = Product.objects.filter( Q(name__icontains=keyword)| Q(description__icontains=keyword)| Q(tags__label__icontains=keyword)| Q(category__name__icontains=keyword)| Q(attributes__label__icontains=keyword) ) return products_qs def find_related_products_v2(keyword): """ More advanced: using search vectors """ fields=('name', 'description', 'tags__label', 'attributes__label', 'category__name') vector = SearchVector(*fields) products_qs = Product.objects.annotate( search=vector ).filter(search=keyword) return products_qs def find_related_products_v3(keyword): """ Ranked product search SearchVectors for the fields SearchQuery for the value SearchRank for relevancy scoring and ranking PROBLEM: returns unrelated instances """ # TODO: figure out why it includes unrelated instances fields=('name', 'description', 'tags__label', 'attributes__label', 'category__name') vector = SearchVector(*fields) query = SearchQuery(keyword) products_qs = Product.objects.annotate( rank=SearchRank(vector, query) ).order_by('-rank') return products_qs def find_related_products_v4(keyword): """ Using trigrams """ fields=('name', 'description', 'tags__label', 'attributes__label', 'category__name') products_qs = Product.objects.annotate( similarity=TrigramSimilarity(fields, keyword) ).order_by('-similarity') return products_qs