improvements to search functionality

This commit is contained in:
Sam
2021-03-02 11:01:22 +00:00
parent 626461bd99
commit 9baa13f30a
3 changed files with 12 additions and 74 deletions

View File

@@ -85,56 +85,6 @@ def extract_search_filters(result_set):
return filter_dict
def find_related_products_v1(keyword):
"""
Classical approach to the search
Using Q objects
"""
# search in tags
tags = Product.tags.tag_model.objects.filter(name__icontains=keyword)
# search in category
categories = Product.category.tag_model.objects.filter(name__icontains=keyword)
# search in attributes
attributes = Product.attributes.tag_model.objects.filter(name__icontains=keyword)
# unified tag search
products_qs = Product.objects.filter(
Q(name__icontains=keyword)|
Q(description__icontains=keyword)|
Q(tags__in=tags)|
Q(category__in=categories)|
Q(attributes__in=attributes)
)
return products_qs
def find_related_products_v5(keyword):
"""
Single query solution, using Q objects
"""
products_qs = Product.objects.filter(
Q(name__icontains=keyword)|
Q(description__icontains=keyword)|
Q(tags__label__icontains=keyword)|
Q(category__name__icontains=keyword)|
Q(attributes__label__icontains=keyword)
)
return set(products_qs)
def find_related_products_v2(keyword):
"""
More advanced: using search vectors
"""
fields=('name', 'description', 'tags__label', 'attributes__label', 'category__name')
vector = SearchVector(*fields)
products_qs = Product.objects.annotate(
search=vector
).filter(search=keyword)
return set(products_qs)
def find_related_products_v3(keyword):
"""
Ranked product search
@@ -215,20 +165,6 @@ def find_related_products_v6(keyword, shipping_cost=None, discount=None, categor
return set(products_qs), min_price, max_price
def find_related_products_v4(keyword):
"""
Similarity-ranked search using trigrams
Not working
"""
# fields=('name', 'description', 'tags__label', 'attributes__label', 'category__name')
products_qs = Product.objects.annotate(
similarity=TrigramSimilarity('name', keyword),
).order_by('-similarity')
return set(products_qs)
def product_loader(csv_reader, user, company=None):
"""
Parse csv data and extract: